Brownian#

Definition#

Name

Mesh>brownian

Type

Brownian

Defined in

Vertices

Brownian vertex integrator moves vertices following brownian dynamics.

Brownian dynamics assumes overdamped Langevin dynamics and solves the set of first-order equations for the position of each vertex \(\mathbf{r}_i\):

Where \(\mathbf{\eta}_{i} \left( t \right) \in \mathbb{R}^{3}\) is a weak random noise obeying:

  • $langle mathbf{eta}_{i} rangle = 0$

  • $langle eta_{i}^{m} left( t right) eta_{j}^{n} left( t^{prime} right) rangle = sqrt{2gamma k_{B}T} delta_{ij} delta_{mn} delta left( t - t^{prime} right)$

Where \(m, n \in \{x, y, z\}\).

Here, \(T\) is the temperature and \(\gamma\) is the friction coefficient.

Python calling#

add .. code-block:: python

evolver.add_integrator(“Mesh>brownian”, {“T”: “0.2”})

run .. code-block:: python

evolver.evolveMD()

set .. code-block:: python

evolver.set(“Mesh>brownian”, {“gamma”: “1.0”})

delete .. code-block:: python

evolver.delete_integrator(“Mesh>brownian”)

Property#

T Temperature used in simulation.

type: double default: 0.0

gamma Friction coefficient.

type: double default: 1.0

seed Seed used to generate the random number.

type: int default: 123456