+1 Disclination Buckling: A PyMembrane Tutorial#
Introduction#
We start with the well-known problem in thin-sheet mechanics that studies out-of-plane buckling of a +1 disclination~cite{Seung88}. This is a common phenomenon observed in mechanics and can be used to create interesting structures like cone-shaped party hats.
The Problem#
For simplicity, we discuss the underlying physics using the discrete version of the problem. Let’s assume we have a hexagonal flat patch tiled by equilateral triangles. The hexagon is made of six equilateral triangular wedges. If we remove one wedge (i.e., a section of angle \(\pi/3\equiv2\pi/6\)) and glue together the two free edges, the resulting plate will be a pentagon, with the vertex in the center having five nearest neighbors. This is a +1 disclination.
The elastic energy can be reduced if the patch is allowed to buckle out of the plane. This introduces some bending penalty but reduces the stretching energy. One can show that the buckling transition happens if the F"oppl-von K'arm'an number \(YR^2/\kappa\ge154`~\cite{Nelson87, Seung88}, where :math:`Y\) is Young’s modulus, \(R\) is the patch radius, and \(\kappa\) is the bending rigidity.
Requirements#
Note
This tutorial assumes that you have already installed PyMembrane. If not, please refer to the installation instructions in the installation section.
Python
NumPy
Matplotlib
SciencePlots
Running the Code#
Save the provided code as
disclination.py
Download or create your vertex and face input files, such as
Input Files
.Run the script by executing:
python disclination.py --N PENTAGON_SIZE --snapshots N_SNAPSHOTS --run_steps N_RUN_STEPS
PyMembrane Implementation#
import pymembrane as mb
import numpy as np
from pprint import pprint
import argparse
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import scienceplots
plt.style.use(['science'])
### Parse arguments
## Now we want to have X snapshots every X steps each
parser = argparse.ArgumentParser(description="Please provide: snapshots and run_steps")
## Add arguments for snapshots and run_steps
parser.add_argument("--snapshots", type=int, required=True, help="Number of snapshots")
parser.add_argument("--run_steps", type=int, required=True, help="Number of run steps")
parser.add_argument("--N", type=int, required=True, help="Pentagon Number size")
user_args = parser.parse_args()
# Access the parsed arguments
snapshots = user_args.snapshots
run_steps = user_args.run_steps
N = user_args.N #pentagon size
#create a system
box = mb.Box(40.0, 40.0, 40.0)
system = mb.System(box)
#check if the box is loaded correctly
print(system.box)
#read the mesh
vertex_file = '../vertices_N' + str(N) + '.inp'
face_file = '../faces_N' + str(N) + '.inp'
system.read_mesh_from_files(files={'vertices':vertex_file, 'faces':face_file})
#save the mesh to display
#create dumper
dump = system.dumper
dump.vtk("initial mesh", False)
#add the evolver class where the potentials and integrators are added
evolver = mb.Evolver(system)
#add the potentials in this case we will add bending and stretching
# stretching
k = str(100.0)
l0 = str(1.0)
evolver.add_force("Mesh>Harmonic", {"k":{"0":k},
"l0":{"0":l0}})
# limit potential
lmin = str(0.7)
lmax = str(1.3)
evolver.add_force("Mesh>Limit", {"lmin":{"0":lmin},
"lmax":{"0":lmax}})
# bending potential
kappa = str(1.0)
evolver.add_force("Mesh>Bending>Dihedral", {"kappa":{"0":kappa}})
#Print the loaded forces
pprint(evolver.get_force_info())
# vertex move:
# first we need to know the edge length to move it appropriate:
compute = system.compute
edge_lengths = compute.edge_lengths()
avg_edge_length= np.mean(edge_lengths)
print("[Initial] avg_edge_length = ", avg_edge_length)
#add the monte carlo integrator
evolver.add_integrator("Mesh>MonteCarlo>vertex>move", {"dr":"0.008"})
## Compute the initial energy
mc_energy = snapshots*[None]
mc_energy[0] = 100.0*compute.energy(evolver)['edges']/system.Numedges
print("[Initial] energy = {} x 10^-2".format(mc_energy[0]))
dump.vtk("pentagon_t0")
for snapshot in range(1, snapshots):
for temperature in [1e-3, 1e-5, 1e-7, 0.0]: #using heating and cooling cycles
evolver.set_global_temperature(str(temperature))
evolver.evolveMC(steps=run_steps)
dump.vtk("pentagon_t" + str(snapshot*run_steps))
mc_energy[snapshot] = 100.0*compute.energy(evolver)['edges']/system.Numedges
print("[{}] energy = {} x 10^-2".format(snapshot, mc_energy[snapshot]))
dump.vtk('final_mesh')
edge_lengths = compute.edge_lengths()
avg_edge_length= np.mean(edge_lengths)
print("[Final] avg_edge_length = ", avg_edge_length)
energy = compute.energy(evolver)
print("[Final] energy = ", mc_energy[snapshots-1])
dump.txt("pentagon")
fig, ax = plt.subplots(figsize=(3.3,3.3))
ax.plot(mc_energy, 'o-')
ax.set_xlabel(r"$MC steps$", fontsize=10, labelpad = 2.5)
ax.set_ylabel(r"$Energy/NumEdges \times 10^{-2}$", fontsize=11, labelpad = 2.5)
ax.tick_params(axis='x', labelsize=8, pad = 4)
ax.tick_params(axis='y', labelsize=8, pad = 4)
ax.ticklabel_format(useMathText=True)
ax.xaxis.set_major_formatter(ticker.ScalarFormatter())
ax.yaxis.set_major_formatter(ticker.ScalarFormatter())
plt.tight_layout()
plt.savefig("energy.svg", dpi=400)
Explanation#
Initialization: We start by importing necessary modules and parsing user arguments for snapshots, run steps, and pentagon size.
System Creation: A simulation box and system instance are created and verified.
Mesh Reading: Mesh files are read, and initial mesh is saved.
Evolver Setup: The Evolver class is used to add potentials for stretching, limiting, and bending. The forces are printed for verification.
Vertex Movement: Monte Carlo integrator is added.
Energy Computation: Initial energy is computed, and the system evolves through snapshots. The energy is plotted and saved.
Result and Interpretation#
This tutorial demonstrates how PyMembrane can be used to model a +1 planar disclination and understand its buckling transition. By following the simple workflow detailed in this tutorial, one can easily extend the simulation to other complex systems.
Attached Files#
Monte Carlo Python script: Python Script
Input files: Input Files
Other two additional scripts for Brownian and Velocity Verlet integrators are also provided:
References#
Seung, H. S., & Nelson, D. R. (1988). Microstructure of two-dimensional disclinations. Physical Review A, 38(2), 1005.
Nelson, D. R. (1987). Order, frustration, and defects in liquids and glasses. Physical Review B, 36(10), 5788.
Note#
Please refer to the PyMembrane documentation for more specific details about classes and methods used in this tutorial. Feel free to modify parameters and observe how they influence the results.